APPENDIX

Foundations

No problem is so big or so complicated that it can’t be run away from.

Linust

In Chapter I1 we have listed some “features” of a foundational system that
would be sufficiently broad and flexible to “handle” category theory. In this
appendix, a model for such a system will be exhibited. First, however, it seems
appropriate to briefly mention other foundational approaches.

Gidel-Bernays-von Neumann Set Theory

The main feature of this theory is that the basic entities involved (called
classes) arc of two sorts: those that are “small” (called sets) and those that are
“large” (called proper classes). Specifically, a class is called a set provided that
it is a member of some class, and it is called a proper class otherwise. This
system has more flexibility than the usual Zermelo-Fraenkel set theory; for
example, with it one can form the class of all sets, the class of all topological
spaces, etc., so that the categories Set, Top, etc. can be legitimately constructed.
However, within this system, there can be no entities that have proper classes as
members. Because of this, functor categories [/, 4] cannot be formed when
the category & is a proper class (the objects and morphisms of such a category
would be proper classes). Also, one cannot properly state the Yoneda Lemma
within this system because to do so would require the formation of entitics having
proper classes as members.

Grothendieck Universes

In this approach, onc adds to the usual Zermelo-Fracnkel axioms the
axiom that every set is contained in a “universe”, wherc a universe is defined

t From PEANUTS @ by Charles M. Schulz © 1963 United Feature Syndicate, Inc.
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to be a set that contains the natural numbers, that is closed under the usual set-
theoretical constructions of pairing, union, power set, and replacement, and that
contains each member of each of its members. Using this as a foundation, one
cannot, for example, form the category Set of all sets, but rather for each
universe ¥, the category Set,- of all sets which belong to ¥". Here there is the
advantage that functor categories can be handled without difficulty. A dis-
advantage is the obvious additional complication introduced by the universes.
For example, one has the tedious task of showing that for each universe ¥7, the
*“essential” properties of Set,. do not depend upon ¥".

The Category of All Categories

Here the idea (due to Lawvere) is to throw out set theory as a foundation
for mathematics and replace it by category theory. *“Category” and *‘functor”
are considered to be primitive notions. The fundamental axioms thus deal with
them and are not concerned with the entities *‘set” and *“membership”. This
approach has the advantage that most serious difficulties encountered in other
approaches can be “legislated away™ by the introduction of appropriate axioms.
The essential disadvantage is that it has less intuitive appeal than set theory.
Also, it is not yet fully developed, and for the purposes of this text (i.e., to
provide an introduction to category theory), using it itself as a foundation would
certainly lead to undue confusion.

One Universe

This approach has been used and developed by Isbell, Mac Lane, and
Feferman and is the foundational approach taken for this text. It consists
“essentially” of the addition of one extra stage of flexibility to the Godel-
Bernays-von Neumann approach, as opposed to the addition of a plethora of
extra stages as with Grothendieck Universes.t Here (cf. Chapter II) there are
three (rather than just two) basic sorts of entities: sets, classes, and conglomer-
ates. Each set is a class and each class is a conglomerate. The sets and classes
together form a model for Gédel-Bernays-von Neumann set theory. However,
even the proper classes occur as elements of conglomerates, so that there is no
difficulty in forming or dealing with functor (quasi)categories (15.1), the quasi-
category €47 of all categories (11.5), or in stating the Yoneda Lemma in its
proper generality (30.6). A disadvantage, of course, is that there are two sorts
of categories—the usual ones and quasicategories (the latter not necessarily
having the property that their objects and morphisms are always sets or the
property that the conglomerate of all morphisms between any two objects

t A slightly different approach (due to Osius) is also accomplished by the introduction of one
more stage of flexibility to Godel-Bernays-von Neumann set theory. Here atoms (i.e., sels
without elements) and certain proper classes called C-classes are introduced. The C-classes are
in one-to-one correspondence with the atoms and this correspondence allows one to regard
them as being “‘essentially™ elements of classes. If a category is called a C-category whenever
its morphisms constitute a C-class, then functor categories of C-categories are again C-
categories and one can form the category of all C-categories (which is no longer a C-category).
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forms a set). However, as can be seen in the course of this text, this poses no real
difficulty and indeed none is encountered so long as one’s primary interest is in
categories, and quasicategories are used mainly as a tool for studying categories.
A model for the “‘one universe’ approach can be obtained as follows:
Begin with the usual axioms for Zermelo-Fraenkel or Gédel-Bernays-von
Neumann set theory. However, call what are usually called “sets™ in the theory,
“conglomerates”. One now has, for example, the conglomerate N of all natural
numbers and one knows for instance that if 4 and B are conglomerates, then
{A, B}, (A, B), A v B,UA, and #(A) are also conglomerates.
Now add the additional axiomt that there exists a “‘universe’” where by a
universe we mean a conglomerate # with the following properties:
(i) Ne¥
(iidew =JAe.
(i) Ae ¥ = P(A) e .
(iv) e % and f: I - % is a function = f[I] e #.
VVaeAeU =>aec.

Calling the members of % *‘sets” and the subconglomerates of % “classes”, all
of the features of the foundational system required in Chapter II can now be
casily verified. For example:

(1) Every set is a class.
Proof: If x € % and z € x, then by (V) z € % hence, x « %. []
(2) Every subconglomerate of a set is a sel.
Proof: If x c y € U, then x € P(y) € ¥ ((iii)), so that x € # ((v)). [
(3) If x and y are sets, then {x, y} is a sel.
Proof: Define f: N = # by f(0) = xand f(a) = yifa # 0. Thenf[N] =
{x, y}isaset ((iv)). []
(4) If x and y are sets, then (x, y) is a set.
Proof: (x, ») = {{x}, {x, y}}. Apply 3). []
(5) If x and y are sets, then x x y is a sel.
Proof: x x y c¢ 22U {x, »). T
(6) If Iis aset and [ [ — ¥, then iU’ f(i) and n: (i) are sets.

Proof:
_Ul S = Us[]e¥ by (i) and (iv).

M1 76 = 24 x Us1d; «6), (5), Gii). and (2)). O
iel
+ Adding a new axiom, of course, poses the prospect of introducing an inconsistency. However,

hypothesizing the existence of a universe is essentially the same as hypothesizing the existence
of a strongly inaccessible cardinal. This is generally felt to be free of inconsistencies.
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