© 2017 Heldermann Verlag Minimax Theory and its Applications 02 (2017) 079–097

V. D. Rădulescu

Dept. of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia vincentiu.radulescu@imar.ro

I.-L. Stăncuţ

Dept. of Mathematics, University of Craiova, 200585 Craiova, Romania stancutloredana@yahoo.com

Perturbation Effects for a Singular Elliptic Problem with Lack of Compactness and Critical Exponent

We study the existence of multiple weak entire solutions of the nonlinear elliptic equation

$$-\Delta u = V(x)|x|^{\alpha}|u|^{\frac{2(\alpha+2)}{N-2}}u + \lambda g(x) \quad \text{in } \mathbb{R}^N \ (N \ge 3),$$

where V(x) is a positive potential, $\alpha \in (-2, 0)$, λ is a positive parameter, and gbelongs to an appropriate weighted Sobolev space. We are concerned with the perturbation effects of the potential g and we establish the existence of some $\lambda_* > 0$ such that our problem has two solutions for all $\lambda \in (0, \lambda_*)$, hence for small perturbations of the right-hand side. A first solution is a local minimum near the origin, while the second solution is obtained as a mountain pass. The proof combines the Ekeland variational principle, the mountain pass theorem without the Palais-Smale condition, and a weighted version of the Brezis-Lieb lemma.

Keywords: Singular elliptic equation, Caffarelli-Kohn-Nirenberg inequality, perturbation, critical point, weighted Sobolev space.

MSC: 35B20, 35B33, 35J20, 58E05