© 2020 Heldermann Verlag Journal of Lie Theory 30 (2020) 653–672

S. Snegirov

Faculty of Mathematics, Northwestern University, Evanston, IL 60208, U.S.A. $\tt stephansnegirov2024@u.northwestern.edu$

Spherical Varieties over Large Fields

Let k_0 be a field of characteristic 0, k its algebraic closure, G a connected reductive group defined over k. Let $H \subset G$ be a spherical subgroup. We assume that k_0 is a large field, for example, k_0 is either the field \mathbb{R} of real numbers or a p-adic field. Let G_0 be a quasi-split k_0 -form of G. We show that if H has self-normalizing normalizer, and $\Gamma = \text{Gal}(k/k_0)$ preserves the combinatorial invariants of G/H, then H is conjugate to a subgroup defined over k_0 , and hence, the G-variety G/H admits a G_0 -equivariant k_0 -form. In the case when G_0 is not assumed to be quasi-split, we give a necessary and sufficient Galois-cohomological condition for the existence of a G_0 -equivariant k_0 -form of G/H.

Keywords: Equivariant form, inner form, algebraic group, spherical homogeneous space.

MSC: 20G15, 12G05, 14M17, 14G27, 14M27.