© 2019 Heldermann Verlag Journal of Lie Theory 29 (2019) 663–754

F. Kassel

CNRS and Institut des Hautes Etudes Scientifiques, Lab. Alexander Grothendieck, 91440 Bures-sur-Yvette, France kassel@ihes.fr

T. Kobayashi

Grad. School of Math. Sciences, and: Kavli Inst. for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Tokyo 153-8914, Japan toshi@ms.u-tokyo.ac.jp

Invariant Differential Operators on Spherical Homogeneous Spaces with Overgroups

We investigate the structure of the ring $\mathbb{D}_G(X)$ of G-invariant differential operators on a reductive spherical homogeneous space X = G/H with an overgroup \widetilde{G} . We consider three natural subalgebras of $\mathbb{D}_G(X)$ which are polynomial algebras with explicit generators, namely the subalgebra $\mathbb{D}_{\widetilde{G}}(X)$ of \widetilde{G} -invariant differential operators on X and two other subalgebras coming from the centers of the enveloping algebras of \mathfrak{g} and \mathfrak{k} , where K is a maximal proper subgroup of G containing H. We show that in most cases $\mathbb{D}_G(X)$ is generated by any two of these three subalgebras, and analyze when this may fail. Moreover, we find explicit relations among the generators for each possible triple (\widetilde{G}, G, H), and describe *transfer maps* connecting eigenvalues for $\mathbb{D}_{\widetilde{G}}(X)$ and for the center of the enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$.

Keywords: Branching law, spherical variety, real spherical variety, symmetric space, invariant differential operator, enveloping algebra.

MSC: 22E46; 17B10, 16S30, 16S32, 17B35