Invariant Differential Operators on Spherical Homogeneous Spaces with Overgroups

We investigate the structure of the ring $\mathcal{D}_G(X)$ of G-invariant differential operators on a reductive spherical homogeneous space $X = G/H$ with an overgroup \tilde{G}. We consider three natural subalgebras of $\mathcal{D}_G(X)$ which are polynomial algebras with explicit generators, namely the subalgebra $\mathcal{D}_{\tilde{G}}(X)$ of \tilde{G}-invariant differential operators on X and two other subalgebras coming from the centers of the enveloping algebras of g and \mathfrak{k}, where K is a maximal proper subgroup of G containing H. We show that in most cases $\mathcal{D}_G(X)$ is generated by any two of these three subalgebras, and analyze when this may fail. Moreover, we find explicit relations among the generators for each possible triple (\tilde{G}, G, H), and describe transfer maps connecting eigenvalues for $\mathcal{D}_{\tilde{G}}(X)$ and for the center of the enveloping algebra of \mathfrak{g}_C.

Keywords: Branching law, spherical variety, real spherical variety, symmetric space, invariant differential operator, enveloping algebra.

MSC: 22E46; 17B10, 16S30, 16S32, 17B35