© 2016 Heldermann Verlag Journal of Lie Theory 26 (2016) 787–805

G. van Dijk

Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands dijk@math.leidenuniv.nl

K.-H. Neeb

Department Mathematik, FAU Erlangen-Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany

neeb@math.fau.de

H. Salmasian

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave., Ottawa Ont. K1N 6N5, Canada hsalmasi@uottawa.ca

C. Zellner

Department Mathematik, FAU Erlangen-Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany

zellner@math.fau.de

On the Characterization of Trace Class Representations and Schwartz Operators

We collect several characterizations of unitary representations (π, \mathcal{H}) of a finite dimensional Lie group G which are trace class, i.e., for each compactly supported smooth function f on G, the operator $\pi(f)$ is trace class. In particular we derive the new result that, for some $m \in \mathbb{N}$, all operators $\pi(f)$, $f \in C_c^m(G)$, are trace class. As a consequence the corresponding distribution character θ_{π} is of finite order. We further show π is trace class if and only if every operator A, which is smoothing in the sense that $A\mathcal{H} \subseteq \mathcal{H}^{\infty}$, is trace class and that this in turn is equivalent to the Fréchet space \mathcal{H}^{∞} being nuclear, which in turn is equivalent to the realizability of the Gaussian measure of \mathcal{H} on the space $\mathcal{H}^{-\infty}$ of distribution vectors. Finally we show that, even for infinite dimensional Fréchet-Lie groups, A and A^* are smoothing if and only if A is a Schwartz operator, i.e., all products of A with operators from the derived representation are bounded.

Keywords: Trace class representation, smoothing operator, Schwartz operator, unitary representation.

MSC: 22E45, 22E66