Cohomology of Lie Semidirect Products and Poset Algebras

When \mathfrak{h} is a toral subalgebra of a Lie algebra \mathfrak{g} over a field k, and M a \mathfrak{g}-module on which \mathfrak{h} also acts torally, the Hochschild-Serre filtration of the Chevalley-Eilenberg cochain complex admits a stronger form than for an arbitrary subalgebra. For a semidirect product $\mathfrak{g} = \mathfrak{h} \ltimes k$ with \mathfrak{h} toral one has $H^*(\mathfrak{g}, M) \cong \wedge \mathfrak{h}^\vee \otimes H^*(\mathfrak{t}, M)^{\mathfrak{h}} = H^*(\mathfrak{h}, k) \otimes H^*(\mathfrak{t}, M)^{\mathfrak{h}}$; if, moreover, \mathfrak{g} is a Lie poset algebra, then $H^*(\mathfrak{g}, \mathfrak{g})$, which controls the deformations of \mathfrak{g}, can be computed from the nerve of the underlying poset. The deformation theory of Lie poset algebras, analogous to that of complex analytic manifolds for which it is a small model, is illustrated by examples.

Keywords: Lie algebra, cohomology, semidirect products, poset algebras.

MSC: 17B56