I. Chrysikos
Department of Mathematics and Statistics, Masaryk University, Brno 611 37, Czech Republic
chrysikosi@math.muni.cz

Invariant Connections with Skew-Torsion and \(\nabla \)-Einstein Manifolds

For a compact connected Lie group \(G \) we study the class of bi-invariant affine connections whose geodesics through \(e \in G \) are the 1-parameter subgroups. We show that the bi-invariant affine connections which induce derivations on the corresponding Lie algebra \(g \) coincide with the bi-invariant metric connections. Next we describe the geometry of a naturally reductive space \((M = G/K, g)\) endowed with a family of \(G \)-invariant connections \(\nabla^\alpha \) whose torsion is a multiple of the torsion of the canonical connection \(\nabla^c \). For the spheres \(S^6 \) and \(S^7 \) we prove that the space of \(G_2 \) (respectively, \(\text{Spin}(7) \))-invariant affine or metric connections consists of the family \(\nabla^\alpha \). We examine the “constancy” of the induced Ricci tensor \(\text{Ric}^\alpha \) and prove that any compact isotropy irreducible standard homogeneous Riemannian manifold, which is not a symmetric space of Type I, is a \(\nabla^\alpha \)-Einstein manifold for any \(\alpha \in \mathbb{R} \). We also provide examples of \(\nabla^{\pm 1} \)-Einstein structures for a class of compact homogeneous spaces \(M = G/K \) with two isotropy summands.

Keywords: Invariant connection with skew-symmetric torsion, naturally reductive space, Killing metric, nabla-Einstein structure.

MSC: 53C025, 53C30, 22E46