© 2016 Heldermann Verlag Journal of Lie Theory 26 (2016) 011–048

I. Chrysikos

Department of Mathematics and Statistics, Masaryk University, Brno 611 37, Czech Republic chrysikosi@math.muni.cz

Invariant Connections with Skew-Torsion and ∇ -Einstein Manifolds

For a compact connected Lie group G we study the class of bi-invariant affine connections whose geodesics through $e \in G$ are the 1-parameter subgroups. We show that the bi-invariant affine connections which induce derivations on the corresponding Lie algebra \mathfrak{g} coincide with the bi-invariant metric connections. Next we describe the geometry of a naturally reductive space (M = G/K, g)endowed with a family of G-invariant connections ∇^{α} whose torsion is a multiple of the torsion of the canonical connection ∇^c . For the spheres S⁶ and S⁷ we prove that the space of G_2 (respectively, Spin(7))-invariant affine or metric connections consists of the family ∇^{α} . We examine the "constancy" of the induced Ricci tensor Ric^{α} and prove that any compact isotropy irreducible standard homogeneous Riemannian manifold, which is not a symmetric space of Type I, is a ∇^{α} -Einstein manifold for any $\alpha \in \mathbb{R}$. We also provide examples of $\nabla^{\pm 1}$ -Einstein structures for a class of compact homogeneous spaces M = G/K with two isotropy summands.

Keywords: Invariant connection with skew-symmetric torsion, naturally reductive space, Killing metric, nabla-Einstein structure.

MSC: 53C025, 53C30, 22E46