© 2015 Heldermann Verlag Journal of Lie Theory 25 (2015) 559–577

T. Milev

Dept. of Mathematics, University of Massachusetts, 100 William T. Morrissey Blvd, Boston, MA 02125, U.S.A. todor.milev@gmail.com

Computing Parabolically Induced Embeddings of Semisimple Complex Lie Algebras in Weyl Algebras

An arbitrary proper parabolic subalgebra \mathfrak{p} of a simple complex Lie algebra \mathfrak{g} induces an embedding $\mathfrak{g} \to \mathbb{W}_n$, and more generally an embedding $\mathfrak{g} \to \mathbb{W}_n \otimes$ End V, where \mathbb{W}_n is the Weyl algebra in n variables, n is the dimension of the nilradical of \mathfrak{p} , and V is an arbitrary \mathfrak{p} -module. We give an elementary proof of this known fact, report on a computer program computing the embeddings, and tabulate exceptional Lie algebra embeddings $G_2 \to \mathbb{W}_5$, $F_4 \to \mathbb{W}_{15}$, $E_6 \to \mathbb{W}_{16}$, $E_7 \to \mathbb{W}_{27}$, $E_8 \to \mathbb{W}_{57}$ arising in this fashion.

Keywords: Generalized Verma modules, exceptional Lie algebras, realization of exceptional Lie algebra, Weyl algebra.

MSC: 17B20, 17B25, 17B35, 17B66