Kac-Moody Lie Algebras Graded by Kac-Moody Root Systems

We look to gradations of Kac-Moody Lie algebras by Kac-Moody root systems with finite dimensional weight spaces. We extend, to general Kac-Moody Lie algebras, the notion of C-admissible pair as introduced by H. Rubenthaler and J. Nervi for semi-simple and affine Lie algebras. If \mathfrak{g} is a Kac-Moody Lie algebra (with Dynkin diagram indexed by I) and (I, J) is such a C-admissible pair, we construct a C-admissible subalgebra \mathfrak{g}^J, which is a Kac-Moody Lie algebra of the same type as \mathfrak{g}, and whose root system Σ grades finitely the Lie algebra \mathfrak{g}. For an admissible quotient $\rho : I \to \overline{I}$ we build also a Kac-Moody subalgebra \mathfrak{g}^ρ which grades finitely the Lie algebra \mathfrak{g}. If \mathfrak{g} is affine or hyperbolic, we prove that the classification of the gradations of \mathfrak{g} is equivalent to those of the C-admissible pairs and of the admissible quotients. For general Kac-Moody Lie algebras of indefinite type, the situation may be more complicated; it is (less precisely) described by the concept of generalized C-admissible pairs.

Keywords: Kac-Moody algebra, C-admissible pair, gradation.

MSC: 17B67