The Structure of \(H \)-(co)module Lie algebras

Let \(L \) be a finite dimensional Lie algebra over a field of characteristic 0. Then by the original Levi theorem, \(L = B \oplus R \) where \(R \) is the solvable radical and \(B \) is some maximal semisimple subalgebra. We prove that if \(L \) is an \(H \)-(co)module algebra for a finite dimensional (co)semisimple Hopf algebra \(H \), then \(R \) is \(H \)-(co)invariant and \(B \) can be chosen to be \(H \)-(co)invariant too. Moreover, the nilpotent radical \(N \) of \(L \) is \(H \)-(co)invariant and there exists an \(H \)-sub(co)module \(S \subseteq R \) such that \(R = S \oplus N \) and \([B,S] = 0 \). In addition, the \(H \)-(co)invariant analog of the Weyl theorem is proved. In fact, under certain conditions, these results hold for an \(H \)-comodule Lie algebra \(L \), even if \(H \) is infinite dimensional.

In particular, if \(L \) is a Lie algebra graded by an arbitrary group \(G \), then \(B \) can be chosen to be graded, and if \(L \) is a Lie algebra with a rational action of a reductive affine algebraic group \(G \) by automorphisms, then \(B \) can be chosen to be \(G \)-invariant. Also we prove that every finite dimensional semisimple \(H \)-(co)module Lie algebra over a field of characteristic 0 is a direct sum of its minimal \(H \)-(co)invariant ideals.

Keywords: Lie algebra, stability, Levi decomposition, radical, grading, Hopf algebra, Hopf algebra action, \(H \)-module algebra, \(H \)-comodule algebra.

MSC: 17B05, 17B40, 17B55, 17B70, 16T05, 14L17