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The Structure of H-(co)module Lie algebras

Let L be a finite dimensional Lie algebra over a field of characteristic 0. Then

by the original Levi theorem, L = B ⊕R where R is the solvable radical and B

is some maximal semisimple subalgebra. We prove that if L is an H-(co)module

algebra for a finite dimensional (co)semisimple Hopf algebra H, then R is H-

(co)invariant and B can be chosen to be H-(co)invariant too. Moreover, the

nilpotent radical N of L isH-(co)invariant and there exists an H-sub(co)module

S ⊆ R such that R = S ⊕ N and [B,S] = 0. In addition, the H-(co)invariant

analog of the Weyl theorem is proved. In fact, under certain conditions, these

results hold for an H-comodule Lie algebra L, even if H is infinite dimensional.

In particular, if L is a Lie algebra graded by an arbitrary group G, then B can

be chosen to be graded, and if L is a Lie algebra with a rational action of a

reductive affine algebraic group G by automorphisms, then B can be chosen

to be G-invariant. Also we prove that every finite dimensional semisimple H-

(co)module Lie algebra over a field of characteristic 0 is a direct sum of its

minimal H-(co)invariant ideals.
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