The Minimal Representation of the Conformal Group and Classical Solutions to the Wave Equation

Using an idea of Dirac, we give a geometric construction of a unitary lowest weight representation \mathcal{H}^+ and a unitary highest weight representation \mathcal{H}^- of a double cover of the conformal group $\text{SO}(2, n + 1)_0$ for every $n \geq 2$. The smooth vectors in \mathcal{H}^+ and \mathcal{H}^- consist of complex-valued solutions to the wave equation $\Box f = 0$ on Minkowski space $\mathbb{R}^{1,n} = \mathbb{R} \times \mathbb{R}^n$ and the invariant product is the usual Klein-Gordon product. We then give explicit orthonormal bases for the spaces \mathcal{H}^+ and \mathcal{H}^- consisting of weight vectors; when n is odd, our bases consist of rational functions. Furthermore, we show that if $\Phi, \Psi \in \mathcal{S}(\mathbb{R}^{1,n})$ are real-valued Schwartz functions and $u \in C^\infty(\mathbb{R}^{1,n})$ is the (real-valued) solution to the Cauchy problem $\Box u = 0$, $u(0,x) = \Phi(x)$, $\partial_t u(0,x) = \Psi(x)$, then there exists a unique real-valued $v \in C^\infty(\mathbb{R}^{1,n})$ such that $u + iv \in \mathcal{H}^+$ and $u - iv \in \mathcal{H}^-$.

Keywords: Conformal group, minimal representation, wave equation, classical solutions, Cauchy problem.

MSC: 22E45, 22E70, 35A09, 35A30, 58J70