Let θ be an involution of the finite dimensional reductive Lie algebra \mathfrak{g} and $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the associated Cartan decomposition. Denote by $K \subset G$ the connected subgroup having \mathfrak{k} as Lie algebra. The K-module \mathfrak{p} is the union of the subsets $\mathfrak{p}^\ell := \{ x \mid \dim K.x = \ell \}$, $\ell \in \mathbb{N}$, and the K-sheets of (\mathfrak{g}, θ) are the irreducible components of the \mathfrak{p}^m. The sheets can be, in turn, written as a union of so-called Jordan K-classes. We introduce conditions in order to describe the sheets and Jordan classes in terms of Slodowy slices. When \mathfrak{g} is of classical type, the K-sheets are shown to be smooth; if $\mathfrak{g} = \mathfrak{gl}_N$ a complete description of sheets and Jordan classes is then obtained.

Keywords: Semisimple Lie algebra, symmetric Lie algebra, sheet, Jordan class, Slodowy slice, nilpotent orbit, root system.

MSC: 14L30, 17B20, 22E46