© 2010 Heldermann Verlag Journal of Lie Theory 20 (2010) 329–346

A.-L. Mare

Dept. of Mathematics and Statistics, University of Regina, Regina SK, Canada S4S 0A2 $\tt mareal@math.unregina.ca$

A Quantum Type Deformation of the Cohomology Ring of Flag Manifolds

Let q_1, \ldots, q_n be some variables and consider the ring $K := \mathbb{Z}[q_1, \ldots, q_n]/(\prod_{i=1}^n q_i)$. We show that there exists a K-bilinear product \star on $H^*(F_n; \mathbb{Z}) \otimes K$ which is uniquely determined by some quantum cohomology like properties (most importantly, a degree two relation involving the generators and an analogue of the flatness of the Dubrovin connection). Then we prove that \star satisfies the Frobenius property with respect to the Poincaré pairing of $H^*(F_n; \mathbb{Z})$; this leads immediately to the orthogonality of the corresponding Schubert type polynomials. We also note that if we pick $k \in \{1, \ldots, n\}$ and we formally replace q_k by 0, the ring $(H^*(F_n; \mathbb{Z}) \otimes K, \star)$ becomes isomorphic to the usual small quantum cohomology ring of F_n , by an isomorphism which is described precisely.

Keywords: Flag manifolds, cohomology, quantum cohomology, periodic Toda lattice, Schubert polynomials.

MSC: 05E15, 14M15, 57T15