© 2007 Heldermann Verlag Journal of Lie Theory 17 (2007) 399–426

M. Didry

Institut Elie Cartan, Université Henri Poincaré, BP 239, 54506 Vandoeuvre-lès-Nancy, France Manon.Didry@iecn.u-nancy.fr

Construction of Groups Associated to Lie- and to Leibniz-Algebras

We describe a method for associating to a Lie algebra \mathfrak{g} over a ring \mathbb{K} a sequence of groups $(G_n(\mathfrak{g}))_{n\in\mathbb{N}}$, which are *polynomial groups* in the sense that will be explained in Definition 5.1. Using a description of these groups by generators and relations, we prove the existence of an action of the symmetric group Σ_n by automorphisms. The subgroup of fixed points under this action, denoted by $J_n(\mathfrak{g})$, is still a polynomial group and we can form the projective limit $J_{\infty}(\mathfrak{g})$ of the sequence $(J_n(\mathfrak{g}))_{n\in\mathbb{N}}$. The formal group $J_{\infty}(\mathfrak{g})$ associated in this way to the Lie algebra \mathfrak{g} may be seen as a generalisation of the formal group associated to a Lie algebra over a field of characteristic zero by the Campbell-Haussdorf formula.

Keywords: Lie algebra, Leibniz algebra, polynomial group, formal group, exponential map, Campbell-Haussdorf formula, dual numbers.

MSC: 17B65, 14L05