Construction of Groups Associated to Lie- and to Leibniz-Algebras

We describe a method for associating to a Lie algebra g over a ring K a sequence of groups $(G_n(g))_{n \in \mathbb{N}}$, which are polynomial groups in the sense that will be explained in Definition 5.1. Using a description of these groups by generators and relations, we prove the existence of an action of the symmetric group Σ_n by automorphisms. The subgroup of fixed points under this action, denoted by $J_n(g)$, is still a polynomial group and we can form the projective limit $J_\infty(g)$ of the sequence $(J_n(g))_{n \in \mathbb{N}}$. The formal group $J_\infty(g)$ associated in this way to the Lie algebra g may be seen as a generalisation of the formal group associated to a Lie algebra over a field of characteristic zero by the Campbell-Haussdorf formula.

Keywords: Lie algebra, Leibniz algebra, polynomial group, formal group, exponential map, Campbell-Haussdorf formula, dual numbers.

MSC: 17B65, 14L05