Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 17 (2007), No. 1, 163--189
Copyright Heldermann Verlag 2007



Spectral Multipliers on Damek-Ricci Spaces

Maria Vallarino
Dip. di Matematica e Applicazioni, UniversitÓ di Milano Bicocca, Via R. Cozzi 53, 20125 Milano, Italy
maria.vallarino@unimib.it



[Abstract-pdf]

Let $S$ be a Damek--Ricci space, and $\Delta$ be a distinguished Laplacean on $S$ which is left invariant and selfadjoint in $L^2(\rho)$. We prove that $S$ is a Calder\'on-Zygmund space with respect to the right Haar measure $\rho$ and the left invariant distance. We give sufficient conditions of H\"ormander type on a multiplier $m$ so that the operator $m(\Delta)$ is bounded on $L^p(\rho)$ when $1
Keywords: Multipliers, singular integrals, Calderon-Zygmund decomposition, Damek-Ricci spaces.

MSC: 22E30, 42B15, 42B20, 43A80

[ Fulltext-pdf  (278  KB)] for subscribers only.