Kazhdan and Haagerup Properties in Algebraic Groups over Local Fields

Given a Lie algebra \mathfrak{s}, we call Lie \mathfrak{s}-algebra a Lie algebra endowed with a reductive action of \mathfrak{s}. We characterize the minimal \mathfrak{s}-Lie algebras with a nontrivial action of \mathfrak{s}, in terms of irreducible representations of \mathfrak{s} and invariant alternating forms.

As a first application, we show that if \mathfrak{g} is a Lie algebra over a field of characteristic zero whose amenable radical is not a direct factor, then \mathfrak{g} contains a subalgebra which is isomorphic to the semidirect product of \mathfrak{sl}_2 by either a nontrivial irreducible representation or a Heisenberg group (this was essentially due to Cowling, Dorofaeff, Seeger, and Wright). As a corollary, if G is an algebraic group over a local field \mathbb{K} of characteristic zero, and if its amenable radical is not, up to isogeny, a direct factor, then $G(\mathbb{K})$ has Property (T) relative to a noncompact subgroup. In particular, $G(\mathbb{K})$ does not have Haagerup’s property. This extends a similar result of Cherix, Cowling and Valette for connected Lie groups, to which our method also applies.

We give some other applications. We provide a characterization of connected Lie groups all of whose countable subgroups have Haagerup’s property. We give an example of an arithmetic lattice in a connected Lie group which does not have Haagerup’s property, but has no infinite subgroup with relative Property (T). We also give a continuous family of pairwise non-isomorphic connected Lie groups with Property (T), with pairwise non-isomorphic (resp. isomorphic) Lie algebras.

Keywords: Kazhdan’s Property (T), Haagerup Property, a-T-menability.

MSC: 22E50; 22D10, 20G25, 17B05