Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains

The basic setup consists of a complex flag manifold $Z = G/Q$ where G is a complex semisimple Lie group and Q is a parabolic subgroup, an open orbit $D = G_0(z) \subset Z$ where G_0 is a real form of G, and a G_0-homogeneous holomorphic vector bundle $E \to D$. The topic here is the double fibration transform $\mathcal{P} : H^q(D; \mathcal{O}(E)) \to H^0(M_D; \mathcal{O}(E'))$ where q is given by the geometry of D, M_D is the cycle space of D, and $E' \to M_D$ is a certain naturally derived holomorphic vector bundle. Schubert intersection theory is used to show that \mathcal{P} is injective whenever E is sufficiently negative.