© 2002 Heldermann Verlag Journal of Lie Theory 12 (2002) 265–288

G. Post

Faculty of Mathematical Sciences, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands

On the Structure of Graded Transitive Lie Algebras

We study finite-dimensional Lie algebras \mathfrak{L} of polynomial vector fields in n vari-

ables that contain the vector fields $\frac{\partial}{\partial x_i}$ (i = 1, ..., n) and $x_1 \frac{\partial}{\partial x_1} + \dots + x_n \frac{\partial}{\partial x_n}$.

We show that the maximal ones always contain a semi-simple subalgebra $\bar{\mathfrak{g}}$, such

that $\frac{\partial}{\partial x_i} \in \bar{\mathfrak{g}}$ (i = 1, ..., m) for an m with $1 \leq m \leq n$. Moreover a maximal

algebra has no trivial $\bar{\mathfrak{g}}$ -modules in the space spanned by $\frac{\partial}{\partial x_i}(i=m+1,\ldots,n).$

The possible algebras $\bar{\mathfrak{g}}$ are described in detail, as well as all $\bar{\mathfrak{g}}$ -modules that constitute such maximal \mathfrak{L} . The maximal algebras are described explicitly for $n \leq 3$.

Keywords: Lie algebras, vector fields, graded Lie algebras.

MSC: 17B66; 17B70, 17B05