© 2002 Heldermann Verlag Journal of Lie Theory 12 (2002) 001–014

A. Boussejra

Dept. of Mathematics, Faculty of Sciences, University Ibn Tofail, Kénitra, Morocco

H. Sami

Dept. of Mathematics, Faculty of Sciences, University Hassan II, Casablanca, Morocco

Characterization of the L^p -Range of the Poisson Transform in Hyperbolic Spaces $B(\mathbb{F}^n)$

The aim of this paper is to give, in a unified manner, the characterization of the L^p -range $(p \ge 2)$ of the Poisson transform P_{λ} for the hyperbolic spaces $B(\mathbb{F}^n)$ over $\mathbb{F} = \mathbb{R}$, \mathbb{C} or the quaternions \mathbb{H} . Namely, if Δ is the Laplace-Beltrami operator of $B(\mathbb{F}^n)$ and sF a \mathbb{C} -valued function on $B(\mathbb{F}^n)$ satisfying $\Delta F = -(\lambda^2 + \sigma^2)F; \lambda \in \mathbb{R}^*$ then we establish: i) F is the Poisson transform of some $f \in L^2(\partial B(\mathbb{F}^n))$ (ie $P_{\lambda}f = F$) if and only if it satisfies the growth condition:

$$\sup_{t>0} \frac{1}{t} \int_{B(0,t)} |F(x)|^2 d\mu(x) < +\infty,$$

where B(0,t) is the ball of radius t centered at 0 and $d\mu$ the invariant measure on $B(\mathbb{F}^n)$. ii) F is the Poisson transform of some $f \in L^p(\partial B(\mathbb{F}^n))$, $p \ge 2$; if and only if it satisfies the following Hardy-type growth condition:

$$\sup_{0 \leq r < 1} (1 - r^2)^{-\frac{\sigma}{2}} \left(\int_{\partial B(\mathbb{F}^n)} |F(r\theta)|^p d\theta) \right)^{\frac{1}{p}} < +\infty$$

Keywords: Hyperbolic spaces, Poisson transform, Calderon Zygumund estimates, Jacobi functions.