© 2006 Heldermann Verlag Journal for Geometry and Graphics 10 (2006) 015–021

E. Korczak ul. sw. Rocha 6B m. 5, 61-142 Poznan, Poland ekorczak@math.put.poznan.pl

A Transformation Based on the Cubic Parabola $y = x^3$

A particular geometric transformation is investigated, the Λ -transformation. It is defined on the set T of tangent lines of the cubic parabola $C^3: y = x^3$ in the Euclidean plane R^2 . Let t be any line from the set T. The point $X \in t$ is called the image of a certain point $M \in t$ under the Λ -transformation, if the condition $(PQMX) = \lambda$ ($\lambda \in R$ and $\lambda \neq 0, 1$) holds, where (PQMX) is the cross-ratio of the four points; P is the point of contact, and Q is the remaining point of intersection between the tangent line t and the basic curve C^3 . Varying the line t in the set T and the point M along the line t we obtain a transformation of the plane R^2 into R^2 . The image of any straight line $p \in R^2$ is discussed too.

Keywords: Lambda-transformation, quadratic transformation.

MSC: 51N15; 51N35