A Varifold Perspective on the \(p \)-Elastic Energy of Planar Sets

Under suitable regularity assumptions, the \(p \)-elastic energy of a planar set \(E \subset \mathbb{R}^2 \) is defined as
\[
\mathcal{F}_p(E) = \int_{\partial E} 1 + |k_{\partial E}|^p \, d\mathcal{H}^1,
\]
where \(k_{\partial E} \) is the curvature of the boundary \(\partial E \). In this work we use a varifold approach to investigate this energy, that can be well defined on varifolds with curvature. First we show new tools for the study of 1-dimensional curvature varifolds, such as existence and uniform bounds on the density of varifolds with finite elastic energy. Then we characterize a new notion of \(L^1 \)-relaxation of this energy by extending the definition of regular sets by an intrinsic varifold perspective, also comparing this relaxation with the classical one of G. Bellettini and L. Mugnai [Characterization and representation of the lower semicontinuous envelope of the elastica functional, Annales de l’Institut Henri Poincaré (C), Non Linear Analysis 21(6) (2004) 839–880; A varifolds representation of the relaxed elastica functional, J. Convex Analysis 14(3) (2007) 543–564]. Finally we discuss an application to the inpainting problem, examples and qualitative properties of sets with finite relaxed energy.

Keywords: Curvature varifolds, \(p \)-elastic energy, relaxation.

MSC: 49Q15, 49Q20, 49Q10, 53A07.