© 2018 Heldermann Verlag Journal of Convex Analysis 25 (2018) 1345–1354

T. K. Subrahmonian Moothathu

School of Mathematics and Statistics, University of Hyderabad, Hyderabad 500 046, India tksubru@gmail.com

Midsets and Voronoi Type Decomposition with Respect to Closed Convex Sets

Let Ω_k denote the collection of all nonempty closed convex subsets of \mathbb{R}^k . We provide short proofs for the following: (i) $\{x \in \mathbb{R}^k : dist(x, A) = \varepsilon\}$ is a C^1 manifold of dimension k - 1 for every $A \in \Omega_k \setminus \{\mathbb{R}^k\}$ and $\varepsilon > 0$, (ii) $\{x \in \mathbb{R}^k : dist(x, A) = dist(x, B)\}$ is a C^1 -manifold of dimension k - 1 for any two disjoint $A, B \in \Omega_k$. We also study the distance of points in \mathbb{R}^k to finitely many closed convex sets. Let $k, n \ge 2$ and $A = \bigcup_{j=1}^n A_j$, where $A_1, \ldots, A_n \in \Omega_k$ are pairwise disjoint. We consider a Voronoi type decomposition of \mathbb{R}^k and establish some topological properties of its 'conflict set'. Letting $X_p = \{x \in \mathbb{R}^k : |\{a \in A :$ $\|x - a\| = dist(x, A)\}| = p\}$, we prove with the help of result (ii) stated above that $X_1 \cup X_2$ is a connected dense open subset of \mathbb{R}^k and that $\overline{X_2} = \bigcup_{p=2}^n X_p$.

Keywords: Euclidean geometry, closed convex sets, Voronoi decomposition, midsets.

MSC: 52A20