Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 25 (2018), No. 2, [final page numbers not yet available]
Copyright Heldermann Verlag 2018



Radial Solutions and Free Boundary of the Elastic-Plastic Torsion Problem

Sofia Giuffrè
D.I.I.E.S., Mediterranean University, Località Feo di Vito, 89122 Reggio Calabria, Italy
sofia.giuffre@unirc.it

Aldo Pratelli
Department Mathematik, University of Erlangen, Cauerstr. 11, 91058 Erlangen, Germany
pratelli@math.fau.de

Daniele Puglisi
Department of Mathematics and Computer Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
dpuglisi@dmi.unict.it



[Abstract-pdf]

The paper is concerned with radial solutions to the elastic-plastic torsion problem, assuming the free term to belong to $L^p(\Omega)$. In particular, we obtain a necessary and sufficient condition in order that the plastic region exists and we characterize the free boundary. Moreover, we find the explicit radial solution $u \in W^{2,p}(\Omega)$ and the Lagrange multiplier $\overline \mu \in L^p(\Omega)$.

[ Fulltext-pdf  (242  KB)] for subscribers only.