Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 25 (2018), No. 1, [final page numbers not yet available]
Copyright Heldermann Verlag 2018



Vector Measures with Values in l(Γ) and Interpolation of Banach Lattices

Enrique A. Sánchez Pérez
Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
easancpe@mat.upv.es

Radoslaw Szwedek
Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznan, Umultowska 87, 61-614 Poznan, Poland
szwedek@amu.edu.pl



An explicit construction for the representation of the Calderón interpolation of spaces of vector measure integrable functions is given as well as for the representation of the real interpolation of these spaces using the K-functional. In order to do this, we introduce a technique based on interpolation of function valued matrices. For the real interpolation, we develop a vector-valued version of the K-functional having values in l-spaces, providing in this way a new procedure for the study of the interpolation of general Banach lattices.

Keywords: Vector measures, integration, interpolation.

MSC: 46E30; 47B38, 46B42, 46B70

[ Fulltext-pdf  (356  KB)] for subscribers only.