© 2017 Heldermann Verlag Journal of Convex Analysis 24 (2017) 365–381

A. Moameni

School of Mathematics and Statistics, Carleton University, Ottawa, Ont. K1S 5B6, Canada momeni@math.carleton.ca

New Variational Principles of Symmetric Boundary Value Problems

The objective of this paper is to establish new variational principles for symmetric boundary value problems. Let V be a Banach space and V^* its topological dual. We shall consider problems of the type $\Lambda u = D\Phi(u)$ where $\Lambda : V \to V^*$ is a linear operator and $\Phi : V \to \mathbb{R}$ is a Gâteaux differentiable convex function whose derivative is denoted by $D\Phi$. It is established that solutions of the latter equation are associated with critical points of functions of the type

$$I_{\lambda,\mu}(u) := \mu \Phi^*(\Lambda u) - \lambda \Phi(u) - \frac{\mu - \lambda}{2} \langle \Lambda u, u \rangle,$$

where λ, μ are two real numbers, Φ^* is the Fenchel dual of the function Φ and $\langle ., . \rangle$ is the duality pairing between V and V^{*}. By assigning different values to λ and μ one obtains variety of new and classical variational principles associated to the equation $\Lambda u = D\Phi(u)$. Namely, Euler-Lagrange principle (for $\mu = 0$, $\lambda = 1$ and symmetric Λ), Clarke-Ekeland least action principle (for $\mu = 1$, $\lambda = 0$ and symmetric Λ), Brezis-Ekeland variational principle ($\mu = 1, \lambda = -1$) and of course many new variational principles such as

$$I_{1,1}(u) = \Phi^*(\Lambda u) - \Phi(u),$$

which corresponds to $\lambda = 1$ and $\mu = 1$. These new potential functions are quite flexible, and can be adapted to easily deal with both nonlinear and homogeneous boundary value problems.