© 2016 Heldermann Verlag Journal of Convex Analysis 23 (2016) 531–565

M.-O. Czarnecki

Institut de Mathématiques et Modélisation, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France marco@univ-montp2.fr

N. Noun

Département de Mathématiques, Faculté des Sciences 1, Université Libanaise, Hadath, Beyrouth, Lebanon nahla.noun@ul.edu.lb

J. Peypouquet

Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile juan.peypouquet@usm.cl

Splitting Forward-Backward Penalty Scheme for Constrained Variational Problems

We study a forward backward splitting algorithm that solves the variational inequality

$$Ax + \nabla \Phi(x) + N_C(x) \ni 0$$

where \mathcal{H} is a real Hilbert space, $A: \mathcal{H} \rightrightarrows \mathcal{H}$ is a maximal monotone operator, $\Phi: \mathcal{H} \to \mathbf{R}$ is a smooth convex function, and N_C is the outward normal cone to a closed convex set $C \subset \mathcal{H}$. The constraint set C is represented as the intersection of the sets of minima of two convex penalization function $\Psi_1: \mathcal{H} \to \mathbf{R}$ and $\Psi_2: \mathcal{H} \to \mathbf{R} \cup \{+\infty\}$. The function Ψ_1 is smooth, the function Ψ_2 is proper and lower semicontinuous. Given a sequence (β_n) of penalization parameters which tends to infinity, and a sequence of positive time steps (λ_n) , the algorithm (SFBP), $n \geq 1$,

$$\begin{cases} x_1 \in \mathcal{H}, \\ x_{n+1} = (I + \lambda_n A + \lambda_n \beta_n \partial \Psi_2)^{-1} (x_n - \lambda_n \nabla \Phi(x_n) - \lambda_n \beta_n \nabla \Psi_1(x_n)), \end{cases}$$

performs forward steps on the smooth parts and backward steps on the other parts. Under suitable assumptions, we obtain weak ergodic convergence of the sequence (x_n) to a solution of the variational inequality. Convergence is strong when either A is strongly monotone or Φ is strongly convex. We also obtain weak convergence of the whole sequence (x_n) when A is the subdifferential of a proper lower semicontinuous convex function. This provides a unified setting for several classical and more recent results, in the line of historical research on continuous and discrete gradient-like systems. **Keywords**: Constrained convex optimization, forward-backward algorithms, hierarchical optimization, maximal monotone operators, penalization methods, variational inequalities.

 $\mathbf{MSC}:\ 37N40,\ 46N10,\ 49M30,\ 65K05,\ 65K10,\ 90B50,\ 90C25$