© 2015 Heldermann Verlag Journal of Convex Analysis 22 (2015) 1197–1205

D. Azagra

ICMAT, Dep. de Análisis Matemático, Facultad Ciencias Matemáticas, Universidad Complutense, 28040 Madrid, Spain azagra@mat.ucm.es

C. Mudarra

ICMAT, Calle Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain carlos.mudarra@icmat.es

Global Approximation of Convex Functions by Differentiable Convex Functions on Banach Spaces

We show that if X is a Banach space whose dual X^* has an equivalent locally uniformly rotund (LUR) norm, then for every open convex $U \subseteq X$, for every real number $\varepsilon > 0$, and for every continuous and convex function $f: U \to \mathbb{R}$ (not necessarily bounded on bounded sets) there exists a convex function $g: U \to \mathbb{R}$ of class $C^1(U)$ such that $f - \varepsilon \leq g \leq f$ on U. We also show how the problem of global approximation of *continuous* (not necessarily bounded on bounded sets) convex functions by C^k smooth convex functions can be reduced to the problem of global approximation of *Lipschitz* convex functions by C^k smooth convex functions.

Keywords: Approximation, convex function, differentiable function, Banach space.

MSC: 46B20, 52A99, 26B25, 41A30