© 2015 Heldermann Verlag Journal of Convex Analysis 22 (2015) 905–915

J. C. Ferrando

Centro de Investigación Operativa, Universidad Miguel Hernandez, 03202 Elche, Spain jc.ferrando@umh.es

J. Kakol

Faculty of Mathematics and Informatics, A. Mickiewicz University, Matejki 48-49, 60-769 Poznan, Poland kakol@amu.edu.pl

S. A. Saxon

Dept. of Mathematics, University of Florida, P.O.Box 118105, Gainesville, FL 32611, U.S.A. stephen_saxon@yahoo.com

Characterizing *P*-spaces X in Terms of $C_p(X)$

Dual weak barrelledness led us to prove that X is a P-space if and only if every pointwise eventually zero sequence in $C_p(X)$ is summable, and other better known characterizations. Novel ones recall utility functions from economics and Arkhangel'skii's (strict) τ -continuity. Mackey \aleph_0 -barrelled duality leads us to prove that X is discrete if and only if every bounded σ -compact set in $C_p(X)$ is relatively compact. We relax the σ -compact hypothesis of Velichko and the σ -countably compact hypothesis of Tkachuk/Shakhmatov to prove: X is a P-space if and only if $C_p(X)$ is σ -relatively sequentially complete.

Keywords: P-spaces, relatively compact, weak barrelledness.

MSC: 54C35, 46A08