© 2015 Heldermann Verlag Journal of Convex Analysis 22 (2015) 399–426

A. Daniilidis

Departament de Matemàtiques C1/308, Universitat Autònoma de Barcelona, 08193 Bellaterra - Cerdanyola del Vallès, Spain arisd@mat.uab.cat

J. Malick

CNRS, Laboratoire J. Kunztmann, Grenoble, France jerome.malick@inria.fr

H. Sendov

Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario, Canada hssendov@stats.uwo.ca

On the Structure of Locally Symmetric Manifolds

This paper studies structural properties of locally symmetric submanifolds. One of the main result states that a locally symmetric submanifold \mathcal{M} of \mathbb{R}^n admits a locally symmetric tangential parametrization in an appropriately reduced ambient space. This property has its own interest and is the key element to establish, in a follow-up paper of the authors [Spectral (isotropic) manifolds and their dimension, J. Anal. Math., to appear], that the spectral set $\lambda^{-1}(\mathcal{M}) := \{X \in \mathbb{S}^n : \lambda(X) \in \mathcal{M}\}$ consisting of all $n \times n$ symmetric matrices having their eigenvalues on \mathcal{M} , is a smooth submanifold of the space of symmetric matrices \mathbb{S}^n . Here $\lambda(X)$ is the *n*-dimensional ordered vector of the eigenvalues of X.

Keywords: Locally symmetric manifold, spectral manifold, permutation, partition, symmetric matrix, eigenvalue.

MSC: 15A18, 53B25; 47A75, 05A05