© 2014 Heldermann Verlag Journal of Convex Analysis 21 (2014) 703–713

L. Zajíček

Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic zajicek@karlin.mff.cuni.cz

Gâteaux and Hadamard Differentiability via Directional Differentiability

Let X be a separable Banach space, Y a Banach space and $f: X \to Y$ an arbitrary mapping. Then the following implication holds at each point $x \in$ X except a σ -directionally porous set: If the one-sided Hadamard directional derivative $f'_{H+}(x, u)$ exists in all directions u from a set $S_x \subset X$ whose linear span is dense in X, then f is Hadamard differentiable at x. This theorem improves and generalizes a recent result of A. D. Ioffe, in which the linear span of S_x equals X and $Y = \mathbb{R}$. An analogous theorem, in which f is pointwise Lipschitz, and which deals with the usual one-sided derivatives and Gâteaux differentiability is also proved. It generalizes a result of D. Preiss and the author, in which f is supposed to be Lipschitz.

Keywords: Gateaux differentiability, Hadamard differentiability, directional derivatives, Hadamard directional derivatives, sigma-directionally porous set, pointwise Lipschitz mapping.

MSC: 46G05; 26B05, 49J50