© 2013 Heldermann Verlag Journal of Convex Analysis 20 (2013) 355–376

E. Giner

Institut de Mathématiques, Laboratoire MIP, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse 04, France giner@math.univ-toulouse.fr

An Upper Bound for the Convergence of Integral Functionals

Given a σ -finite measure space $(\Omega, \mathcal{T}, \mu)$ endowed with a μ -complete tribe, a separable Banach space E, we consider a topological vector space (X, T), Xbeing a decomposable subspace of measurable E-valued functions defined on Ω . Under a reasonable assumption on the vector topology T, we show that if $(f_n)_n$ is a sequence of extended real-valued measurable integrands defined on the product $\Omega \times E$, with upper epi-limit (or upper Γ -limit) $f = ls_e f_n$, then I_f is in many cases an upper bound for the T-upper epi-limit of the sequence $(I_{f_n})_n$, where I_f , I_{f_n} are the integral functionals defined on X associated to the integrands f, f_n . The cases of Lebesgue spaces endowed with its strong, weak, or Mackey topologies are reached. We discuss also the necessity of the given conditions.

Keywords: Integral functional, upper epi-limits, Γ -convergence, finally equiintegrable sets.

MSC: 26A16, 26A24, 26E15, 28B20, 49J52, 54C35