Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 20 (2013), No. 1, 157--180
Copyright Heldermann Verlag 2013



The Relative Isoperimetric Inequality: the Anisotropic Case

Francesco Della Pietra
UniversitÓ del Molise, Dipartimento S.A.V.A., FacoltÓ di Ingegneria, Via Duca degli Abruzzi, 86039 Termoli (CB), Italy
francesco.dellapietra@unimol.it

Nunzia Gavitone
UniversitÓ di Napoli, Dip. di Matematica e Applicazioni, 80126 Napoli, Italy
nunzia.gavitone@unina.it



[Abstract-pdf]

We prove a relative isoperimetric inequality in the plane, when the perimeter is defined with respect to a convex, positively homogeneous function of degree one $H\colon\mathbb{R}^2 \rightarrow [0,+\infty[$. Under suitable assumptions on $\Omega$ and $H$, we also characterize the minimizers.

Keywords: Anisotropic perimeter, relative isoperimetric inequalities, Wulff shape.

MSC: 52A40

[ Fulltext-pdf  (254  KB)] for subscribers only.