© 2011 Heldermann Verlag Journal of Convex Analysis 18 (2011) 1141–1170

S. Zagatti SISSA, Via Bonomea 265, 34136 Trieste, Italy

An Integro-Extremization Approach for Non Coercive and Evolution Hamilton-Jacobi Equations

We devote the *integro-extremization* method to the study of the Dirichlet problem for homogeneous Hamilton-Jacobi equations

$$\begin{cases} F(Du) = 0 & \text{ in } \emptyset \\ u(x) = \varphi(x) & \text{ for } x \in \partial \emptyset, \end{cases}$$

with a particular interest for non coercive hamiltonians F, and to the Cauchy-Dirichlet problem for the corresponding homogeneous time-dependent equations

$$\begin{cases} \frac{\partial u}{\partial t} + F(\nabla u) = 0 & \text{in }]0, T[\times \emptyset \\ u(0, x) = \eta(x) & \text{for } x \in \emptyset \\ u(t, x) = \psi(x) & \text{for } (t, x) \in [0, T] \times \partial \emptyset. \end{cases}$$

We prove existence and some qualitative results for viscosity and almost everywhere solutions, under suitably convexity conditions on the hamiltonian F, on the domain \emptyset and on the boundary datum, without any growth assumptions on F.

MSC: 49L25