© 2010 Heldermann Verlag Journal of Convex Analysis 17 (2010) 535–551

U. Yıldıran

Dept. of Systems Engineering, Yeditepe University, Istanbul, Turkey <code>uyildiran@yeditepe.edu.tr</code>

I. E. Köse

Dept. of Mechanical Engineering, Bogazici University, Istanbul, Turkey $\verb+koseemre@boun.edu.tr$

LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets

We are motivated by the question of when a convex semialgebraic set in \mathbb{R}^n is equal to the feasible set of a linear matrix inequality (LMI). Given a basic semialgebraic set, \mathcal{V} , which is defined by quadratic polynomials, we restrict our attention to closure of its convex hull, namely $\overline{\mathbf{co}}(\mathcal{V})$. Our main result is that $\overline{\mathbf{co}}(\mathcal{V})$ is equal to the intersection of a finite number of LMI sets and the halfspaces supporting \mathcal{V} along a particular subset of the boundary of \mathcal{V} . As a corollary, we show that in \mathbb{R}^2 , the halfspaces of concern are finite in number, so that an LMI representation for $\overline{\mathbf{co}}(\mathcal{V})$ always exists.