© 2008 Heldermann Verlag Journal of Convex Analysis 15 (2008) 165–178

M. Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland M.Nowak@wmie.uz.zgora.pl

Linear Operators on Vector-Valued Function Spaces with Mackey Topologies

Let E be an ideal of L^0 over a σ -finite measure space (Ω, Σ, μ) and let E' be the Köthe dual of E. Let $(X, \|\cdot\|_X)$ be a real Banach space, and X^* the Banach dual of X. Let E(X) be a subspace of the space $L^0(X)$ of μ -equivalence classes of all strongly Σ -measurable function $f: \Omega \to X$, and consisting of all those $f \in L^0(X)$ for which the scalar function f, defined by $f(\omega) = ||f(\omega)||_X$ for $\omega \in \Omega$, belongs to E. Assume that a Banach space X is an Asplund space. It is shown that a subset C of $E'(X^*)$ is relatively $\sigma(E'(X^*), E(X))$ -compact iff the set $\{\tilde{g}: g \in E'(X^*)\}$ in E' is relatively $\sigma(E', E)$ -compact. We consider the topology $\overline{\tau(E,E')}$ on E(X) associated with the Mackey topology $\tau(E,E')$ on E. It is shown that $\overline{\tau(E,E')}$ is strongly Mackey topology; hence $\overline{\tau(E,E')}$ coincides with the Mackey topology $\tau(E(X), E'(X^*))$. Moreover, $E'(X^*)$ is $\sigma(E'(X^*), E(X))$ -sequentially complete whenever E' is perfect. We examine the space $\mathcal{L}_{\tau}(E(X), Y)$ of all $(\tau(E(X), E'(X^*)), \|\cdot\|_Y)$ -continuous linear operators from E(X) to a Banach space $(Y, \|\cdot\|_Y)$, equipped with the weak operator topology (briefly WOT) and the strong operator topology (briefly SOT). It is shown that if E is perfect, then $\mathcal{L}_{\tau}(E(X), Y)$ is WOT-sequentially complete, and every SOT-compact subset of $\mathcal{L}_{\tau}(E(X), Y)$ is $(\tau(E(X), E'(X^*)), \|\cdot\|_Y)$ equicontinuous. Moreover, a Vitali-Hahn-Saks type theorem for $\mathcal{L}_{\tau}(E(X), Y)$ is obtained.

Keywords: Vector-valued function spaces, Mackey topologies, strongly Mackey topologies, weak compactness, Radon-Nikodym property, Asplund spaces, sequential completeness, convex compactness property, weak operator topology, strong operator topology, linear operator

MSC: 46E40, 46E30, 46A20, 46A70