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Hausdorff Dimension of Cut Loci of Generic Subspaces of Euclidean
Spaces

Let F be a closed set of the Euclidean space Ed, with ∅ 6= F 6= Ed and d ≥ 2. Let
N be the set of centers of all open balls contained in Ed \F which are maximal
with respect to inclusion. We prove that the Hausdorff dimension dimH(N ) of
N equals d when F is, in the sense of Baire categories, a generic compact subset
of Ed, or when Ed \ F is the interior of a generic convex body of Ed. If C is
a generic convex body, we deduce that the set of all points of ∂C where the
“upper curvature” of ∂C is positive and finite, is of Hausdorff dimension d− 1.
Let CurvCt be the set of centers of upper curvature of ∂C, and ω be any non
empty open subset of Ed. We also prove that dimH(ω ∩CurvCt) = d. Let B be
a generic compact subset of Ed, or a generic convex body of Ed. Let aN be the
set of centers of all closed balls containing B which are minimal with respect
to inclusion. We also prove that dimH(aN ) = d. The proofs employ some of
the ideas used in a previous paper of the author [“Dimension de Hausdorff de
la nervure”, Geom. Dedicata, 85 (2001) 217–235] to construct large cut loci in
Ed.
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