© 2006 Heldermann Verlag Journal of Convex Analysis 13 (2006) 603–622

R. S. Burachik regi@cos.ufrj.br

A. N. Iusem

Inst. Matématica Pura e Aplicada, Estrada Doña Castorina 110, Rio de Janeiro, CEP 22460-320, Brazil iusp@impa.br

On Non-Enlargeable and Fully Enlargeable Monotone Operators

We consider a family of enlargements of maximal monotone operators in a reflexive Banach space. Each enlargement, depending on a parameter $\varepsilon \geq 0$, is a continuous point-to-set mapping $E(\varepsilon, x)$ whose graph contains the graph of the given operator T. The enlargements are also continuous in ε , and they coincide with T for $\varepsilon = 0$. The family contains both a maximal and a minimal enlargement, denoted as T^e and T^{se} respectively. We address the following questions: a) which are the operators which are not enlarged by T^e , i.e., such that $T(\cdot) = T^e(\varepsilon, \cdot)$ for some $\varepsilon > 0$?

b) same as (a) but for T^{se} instead of T^e .

c) Which operators are fully enlargeable by T^e , in the sense that for all x and all $\varepsilon > 0$ there exists $\delta > 0$ such that all points whose distance to T(x) is less than δ belong to $T^e(\varepsilon, x)$?

We prove that the operators not enlarged by T^e are precisely the point-to-point affine operators with skew symmetric linear part; those not enlarged by T^{se} are the point-to-point and affine operators, and the operators fully enlarged by T^e are those operators T whose Fitzpatrick function is continuous in its second argument at pairs belonging to the graph of T.

Keywords: Maximal monotone operators, enlargements.

MSC: 46N10, 47H05