© 2002 Heldermann Verlag Journal of Convex Analysis 09 (2002) 055–072

A. Taheri

Max-Planck-Institute for Mathematics, Inselstr. 22–26, 04103 Leipzig, Germany

On Critical Points of Functionals with Polyconvex Integrands

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with Lipschitz boundary, and assume that $f: \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ is a Carathéodory integrand such that $f(x, \cdot)$ is *polyconvex* for \mathcal{L}^n - a.e. $x \in \Omega$. In this paper we consider integral functionals of the form

$$\mathcal{F}(u,\Omega) := \int_{\Omega} f(x,Du(x)) \, dx$$

where f satisfies a growth condition of the type

$$|f(x, A)| \le c(1 + |A|^p),$$

for some c > 0 and $1 \le p < \infty$, and u lies in the Sobolev space of vector-valued functions $W^{1,p}(\Omega, \mathbb{R}^m)$. We study the implications of a function u_0 being a critical point of \mathcal{F} . In this regard we show among other things that if f does not depend on the spatial variable x, then every piecewise affine critical point of \mathcal{F} is a global minimizer subject to its own boundary condition. Moreover for the general case, we construct an example exhibiting that the uniform positivity of the second variation at a critical point is *not* sufficient for it to be a strong local minimizer. In this example f is discontinuous in x but smooth in A.